几何布朗运动和分数布朗运动有什么区别
布朗运动的B函数一般指时间内位移,总时间T累计位移就是全部路径的时间内的B求加法
几何布朗运动的B函数则是求乘法(乘法得面积,所以定义为几何),取对数之后可以视为求加法。两者就是差一个对数变换。运动几何学是怎样的一门学科
运动几何学又叫微分几何学 微分几何学
differential geometry 应用微分学来研究三维欧几里得空间中的曲线、曲面等图形性质的数学分支.差不多与微积分学同时起源于17世纪.单变量函数的几何形象是一条曲线,函数的导数就是曲线切线的斜率.函数的积分在几何上则可理解为一曲线下的面积等等.这种把微积分应用于曲线、曲面的研究,实质上就是微分几何学的开端.L.欧拉、G.蒙日、J.L.拉格朗日以及A.-L.柯西等数学家都曾为微分几何学的发展作出过重要贡献.与此同时,曲面内蕴几何等崭新的思想也在不断地产生并积累着.在此基础上,C.F.高斯奠定了曲面论基础,并使微分几何学成为一门新的数学分支.按F.克莱因变换群几何的分类方法来看,微分几何学应属于运动群,所以也称为运动几何学或初等微分几何学. 微分几何学的研究对数学其他分支以及力学、物理学、工程学等的影响是不可估量的.如:伪球面上的几何与非欧几何有密切关系;测地线和力学、变分学、拓扑学等有着深刻的联系,是内容丰富的研究课题.这方面有以J.阿达马、H.庞加莱等人为首的优异研究.极小曲面是和复变函数论、变分学、拓扑学关系极为深刻的研究领域,K.魏尔斯特拉斯、J.道格拉斯等人作出过卓越贡献. 微分几何学的研究工具大部分是微积分学.力学、物理学、天文学以及技术和工业的日益增长的要求则是微分几何学发展的重要因素.尽管微分几何学主要研究三维欧几里得空间中的曲线、曲面的局部性质,但它形成了现代微分几何学的基础则是毋庸置疑的.因为依赖于图形的直观性及由它进行类推的方法,即使在今天也未失其重要性. 微分几何学的产生 微分几何学的产生和发展是和数学分析密切相连的.在这方面第一个做出贡献的是瑞士数学家欧拉.1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究. 十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作.在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素. 1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础.微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学.其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等.他的理论奠定了近代形式曲面论的基础. 1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类.在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立.特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展. 随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科.褶皱几何学与运动学要素主要有哪些
1. 核 指在平面或剖面上褶皱构造——背斜或向斜的中心部位。这是一个相对的概念,随着时间的变化核部地层或岩层的时代会有变化。
2. 翼 泛指褶皱核部两侧的地层。3. 拐点 为连续地周期性波形曲线上,上凸与下凹部分的分界点。即褶皱翼部曲率为零的点。 4. 翼间角 指构成两翼的同一褶皱面的拐点的切线的夹角,亦指两翼 间的最小夹角。圆弧形褶皱的翼间角是指通过两翼上两个拐点的切线之间的夹角。5. 转折端 指褶皱面从一翼过渡到另一翼的弯曲部分。6.褶轴 对圆柱状褶皱而言,是指一条平行其自身移动能描绘出褶皱面弯曲形态的直线。7.枢纽 在褶皱的各个横剖面上,同一褶皱面的各最大弯曲点的联线。8.轴迹 轴面与地面或任一平面的交线[1] 。2其他要点编辑7. 脊线和槽线 同一褶皱面上沿着背形最高点的连线为脊线,沿向形最低点的连线为槽线。脊线或槽线在其自身的延伸方向上常有起伏变化。脊线中最高点表示褶皱隆起部位,称脊线中最低部位称为轴陷。为轴隆或高点。8. 轴面各相邻褶皱面的枢纽连成的面。轴面是一个设想的标志面,它可以是平直面,也可以是曲面。轴面与地面或其他任何面的交线称作轴迹。轴面与地形面的交线在地质图上的投影称为地质图上的轴迹。几何布朗运动和分数布朗运动有什么区别
几何布朗运动 (GBM) (也叫做指数布朗运动) 是连续时间情况下的随机过程,其中随机变量的对数遵循布朗运动,[1] also called aWiener process.几何布朗运动在金融数学中有所应用,用来在布莱克-舒尔斯定价模型中模仿股票价格。
分数布朗运动世界是非线性的,宇宙万物绝大部分不是有序的、线性的、稳定的,而是混沌的、非线性的、非稳定和涨落不定的沸腾世界。有序的、线性的、稳定的只存在于我们自己构造的理论宫殿,而现实宇宙充满了分形。在股票市场的价格波动、心率及脑波的波动、电子元器件中的噪声、自然地貌等大量的自然现象和社会现象中存在着一类近乎全随机的现象,它们具有如下特性:在时域或空域上有自相似性和长时相关性和继承性;在频域上,其功率谱密度在一定频率范围内基本符合1/f的多项式衰减规律。因此被称为1/f族随机过程。Benoit Mandelbrot和Van Ness 提出的分数布朗运动(fractional Brownian motion,FBM)模型是使用最广泛的一种,它具有自相似性、非平稳性两个重要性质,是许多自然现象和社会现象的内在特性。分数布朗运动被赋予不同的名称,如分形布朗运动、有偏的随机游走(Biased Random walk)、分形时间序列(Fractional time serial)、分形维纳过程等。其定义如下:设0<H<1,Hurst参数为H的分数布朗运动为一连续Gaussian过程,且 ,协方差为 。H=1/2时, 即为标准布朗运动 。分数布朗运动特征是时间相关函数C(t)≠0,即有持久性或反持久性,或者说有“长程相关性”,不失一般性,可以给出一维情形的布朗运动及分数布朗运动的定义。分数布朗运动既不是马尔科夫过程,又不是半鞅,所以不能用通常的随机来分析。分数布朗运动与布朗运动之间的主要区别为:分数布朗运动中的增量是不独立的,而布朗运动中的增量是独立的;分数布朗运动的深层次上和布朗运动的层次上它们的分维值是不同的,分数布朗运动(分形噪声)的分维值alpha等于1/H,H为Hurst指数,而布朗运动(白噪声)的分维值都是2。Hurst在一系列的实证研究中发现,自然现象都遵循“有偏随机游走”,即一个趋势加上噪声,并由此提出了重标极差分析法(Rescaled Range Analysis,R/S分析)。设R/S表示重标极差,N表示观察次数,a是固定常数,H表示赫斯特指数,在长达40多年的研究中,通过大量的实证研究,赫斯特建立了以下关系:R/S=(aN)H通过对上式取对数,可得:log(R/S)=H(logN十loga)只要找出R/S关于N的log/log图的斜率,就可以来估计H的值。 Hurst指数H用来度量序列相关性和趋势强度:当H=0.5时,标准布朗运动,时间序列服从随机漫步;当H≠0.5时,C(t)≠0,且与时间无关,正是分数布朗运动的特征。当0.5<H<1时,序列是趋势增强的,遵循有偏随机游走过程;当0<H<0.5时,序列是反持续性的。可以看出,Hurst指数能够很好地刻画证券市场的波动特征,将R/S分析应用于金融市场,可以判断收益率序列是否具有记忆性,记忆性是持续性的还是反持续性的。所以,分数布朗运动是复杂系统科学体系下的数理金融学的一个合适的工具,作为对描述金融市场价格波动行为模型的维纳过程的一般化、深刻化具有重要的理论与现实意义。运动学只研究物体运动的几何性质而不涉及引起运动的物理原因,对吗
运动学,从几何的角度(指不涉及物体本身的物理性质和加在物体上的力) 描述和研究物体位置随时间的变化规律的力学分支。以研究质点和刚体这两个简化模型的运动为基础,并进一步研究变形体(弹性体、流体等) 的运动。研究后者的运动,须把变形体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选参考系的不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。 动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展也常与解决动力学问题有关,所以数学家对动力学有着浓厚的兴趣。 区别: 动力学,即既涉及运动又涉及受力情况的,或者说跟物体质量有关系的问题。常与牛顿第二定律或动能定理、动量定理等式子中含有m的学问。含有m说明要研究物体之间的的相互作用(就是力)。
运动学,跟质量与受力无关,只研究速度、加速度、位移、位置、角速度等参量的常以质点为模型的题。只有一个物体的话研究它的质量没有什么意义,因为质量就是它的惯性大小,或被力影响的强弱,而力必须是两个物体之间的。