样本均值,样本平均值和总体平均值什么区别?什么关系

时尚网,时尚女装,时尚杂志

样本平均值和总体平均值什么区别?什么关系

一、样本平均值与总体平均值的区别

1、定义不同

样本均值是指在总体中的样本数据的均值。而总体均值又称为总体的数学期望或简称期望,是描述随机变量取值平均状况的数字特征。包括离散型随机变量的总体均值和连续型随机变量的总体均值。

2、计算依据不同

样本均值的计算依据是样本个数,总体均值的计算依据是总体的个数。一般情况下样本个数小于等于总体个数。

3、代表意义不同

样本均值代表着所抽取的样本的集中趋势,而总体均值代表着全体个体的集中趋势。样本来自总体,但是样本只是总体的一部分,两者不可能完全相等,一般有差异。

二、样本平均值与总体平均值的关系

1、计算思路相同:两个均值的计算思路都是用所测量的群体的某指标的总和除以群体个数。

2、反映的都是数据的集中趋势。样本均值和总体均值都是反映数据集中趋势的一项指标。

3、两者一般情况下不完全相等,样本是对总体的推测。

样本只是总体的一部分,样本取自总体,可以反映总体的特征,因此样本平均值也会比较接近于总体平均值,恰好等于总体平均值的机会很少。一般情况下样本均值与总体均值之间会有些差异。

参考资料来源:百度百科-样本平均值

参考资料来源:百度百科-总体平均值

如何理解样本均值的均值

均值是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。

解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

假设有一个总体,从中抽样,每次抽n个,每次抽出来的n个数值会有个均值u,如果一共抽了k次,那就有k个均值,比如设为u1,u2,u3,...uk,这k个均值的均值等于总体的均值。

扩展资料:

样本均值的抽样分布是所有的样本均值形成的分布。当n充分大时(通常要求n ≥30),样本均值的分布近似服从均值为μ ,方差为σ^2/n 的正态分布,即Z分布;当n为小样本时(通常n<30),样本均值的分布则不服从Z分布,服从t分布。

样本均值的分布是所有来自总体的样本量为N的随机样本的样本均值分布。在常见的分布中,x轴是总体的分数,在样本均值分布中,x轴就是每个样本的均值M,样本均值分布的均值u相等,并且被叫做M的期望值。样本均值分布的M的期望值、标准误分别对应总体的均值、标准差。

参考资料来源:百度百科-样本均值

为什么样本均值和样本方差是相互独立的????

样本均值和样本方差在总体服从正态分布时相互独立。

独立性的这个推论,叙述起来比较复杂,这里简单说一下。不完整,就是两个随机变量独立,以它们为自变量的连续的因变量之间也独立。若总体不服从正态分布,则样本均值和样本方差不一定独立。也就不能推出后面的结论。

样本均值的平方与样本方差的独立性的关系(注意不是样本均值),样本均值的平方与样本方差当然独立(因为总体服从正态分布)。

根据上面的结论、独立性的一个推论可以推出很多这样的命题,比如样本均值和样本标准差独立等等。

在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。 当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。

扩展资料:

样本方差可以理解成是对所给总体方差的一个无偏估计。E(S^2)=DX。

n-1的使用称为贝塞尔校正,也用于样本协方差和样本标准偏差(方差平方根)。 平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。

标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。无偏样本方差是函数ƒ(y1,y2)=(y1-y2)2/2的U统计量,这意味着它是通过对群体的两个样本统计平均得到的。

设总体共有N个元素,从中随机抽取一个容量为n的样本,在重置抽样时,共有N·n 种抽法,即可以组成N·n不同的样本,在不重复抽样时,共有N·n个可能的样本。

每一个样本都可以计算出一个均值,这些所有可能的抽样均值形成的分布就是样本均值的分布。但现实中不可能将所有的样本都抽取出来,因此,样本均值的概率分布实际上是一种理论分布。

参考资料来源:百度百科——样本均值

参考资料来源:百度百科——样本方差

样本均值为什么和样本方差独立?08年真题概率的最后一题。

样本均值和样本方差在总体服从正态分布时相互独立。

独立性的这个推论,叙述起来比较复杂,这里简单说一下。不完整,就是两个随机变量独立,以它们为自变量的连续的因变量之间也独立。

若总体不服从正态分布,则样本均值和样本方差不一定独立。也就不能推出后面的结论。

样本均值的平方与样本方差的独立性的关系(注意不是样本均值),样本均值的平方与样本方差当然独立(因为总体服从正态分布)。

根据上面的结论、独立性的一个推论可以推出很多这样的命题,比如样本均值和样本标准差独立等等。

扩展资料

样本是受审查客体的反映形象或其自身的一部分。按一定方式从总体中抽取的若干个体,用于提供总体的信息及由此对总体作统计推断。又称子样。

例如因为人力和物力所限,不能每年对全国的人口进行普查,但可以通过抽样调查的方式来得到需要的信息。从总体中抽取样本的过程叫抽样。

最常用的抽样方式是简单随机抽样,按这种方式抽样,总体中每个个体都有同等的机会被抽入样本,这样得到的样本称简单随机样本。

样本的平均值称样本均值,样本偏离样本均值的平方的平均值称为样本方差,在数理统计中,常常用样本均值来估计总体均值,用样本方差来估计总体方差。

参考资料

万方数据库-样本均值与样本方差相互独立的充要条件

概率论,为什么样本均值的方差为n分之D(X)?

分析如图所示:

在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX,其中E(X)是X的期望值,X是变量值,公式中的E是期望值expected value的缩写,意为“变量值与其期望值之差的平方和”的期望值。

离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2;

对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。

扩展资料:

方差的性质:

1、设C是常数,则D(C)=0

2、设X是随机变量,C是常数,则有

3、设 X 与 Y 是两个随机变量,则

其中协方差

特别的,当X,Y是两个不相关的随机变量则

此性质可以推广到有限多个两两不相关的随机变量之和的情况。

如何用matlab计算样本均值和方差

1、在相关窗口里面,直接输入相关的数据。

2、这个时候,需要通过统计来点击基本统计中的双样本。

3、下一步如果没问题,就根据实际情况确定对应的参数。

4、这样一来会生成图示的结果,即可用matlab计算样本均值和方差了。

为什么说随机变量的均值是常数,样本的平均值是一个随机变量?谢谢回答

随机变量的均值与样本的均值可以是相等的,样本是随机变量的某些取值,因此只要样本是随机选取的,则随机变量的均值与样本的均值是相同的。

当然,随机变量的均值与样本的均值并非等价,因为样本代表的是部分的情况,不能完全与整体等价。随机变量的数学期望应该按照定义去理解,而不是按照“实际意义”去理解,越高深的数学分支越是这样,其实很多数学概念根本就没有实际意义。不跳出这样一种理解数学概念的低级模式,是没有办法学习一些更高层次的数学分支的。

扩展资料

如果求出的平均数是由所研究对象全部数据求出的,就叫做总体平均数;如果是由样本求出的,就叫做样本平均数。可以用样本平均数去估算总体平均数.

计算方法:

(1)若 , ,…, ,则 (a—常数, , ,…,接近较整的常数a);

(2)加权平均数:

(3)平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

参考资料来源:百度百科-随机变量

参考资料来源:百度百科-样本平均数

对样本均值求和为什么是n倍样本均值?

某样本:x1、x2、x3、……、xn。那么,样本均值为(如下图):

第二个式子中的n也是常数,也可以提到求和号外面。

>>>>全文在线阅读<<<<

标签: 平均值 样本

相关阅读