二次色的概念,三原色与二次色的关系

时尚网,时尚女装,时尚杂志

三原色与二次色的关系

色彩中不能再分解的基本色称之为原色,原色可以合成其他的颜色,而其他颜色却不能还原出本来的色彩。我们通常说的三原色,即红、绿、蓝。三原色可以混合出所有的颜色,同时相加为白色。

三原色光模式(英语:RGB color model),又称RGB颜色模型或红绿蓝颜色模型,是一种加色模型,将红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以产生多种多样的色光。

RGB颜色模型的主要目的是在电子系统中检测,表示和显示图像,比如电视和电脑,但是在传统摄影中也有应用。在电子时代之前,基于人类对颜色的感知,RGB颜色模型已经有了坚实的理论支撑。RGB是一种依赖于设备的颜色空间:不同设备对特定RGB值的检测和重现都不一样,因为颜色物质(荧光剂或者染料)和它们对红、绿和蓝的单独响应水平随着制造商的不同而不同,甚至是同样的设备不同的时间也不同。

二次色即“间色”,是由品红、黄、青的减法三原色中任意两种原色调配成的色相。由两种原色按不同比例可调配多种二次色。例如品红和黄合成大红;黄和青合成绿色;青与品红合成蓝色等等。

什么是原色,间色和复色

1,原色是指不能透过其他颜色的混合调配而得出的“基本色”。

由于人类肉眼有三种不同颜色的感光体,因此所见的色彩空间通常可以由三种基本色所表达,这三种颜色被称为“三原色”。一般来说叠加型的三原色是红色、绿色、蓝色(又称三基色,用于电视机、投影仪等显示设备);而消减型的三原色是品红色、黄色、青色(用于书本、杂志等的印刷)。

2,在专业上的来讲,由三原色等量调配而成的颜色,我们把它们叫做间色(secondary color)。(品)红、(柠檬)黄、(不鲜艳)青三原色中的某二种原色相互混合的颜色。

当我们把三原色中的红色与黄色等量调配就可以得出橙色,把红色与青色等量调配得出紫色,而黄色与青色等量调配则可以得出绿色。当然三种原色调出来就是近黑色了。在调配时,由于原色在份量多少上有所不同,所以能产生丰富的间色变化。

3,用任何两个间色或三个原色相混合而产生出来的颜色叫复色。在一些教科书中,复色也叫次色。

三次色,再间色,也叫“复合色”。 复色是用原色与间色相调或用间色与间色相调而成的“三次色”。复色是最丰富的色彩家族,千变万化,丰富异常,复色包括了除原色和间色以外的所有颜色。复色可能是三个原色按照各自不同的比例组合而成,也可能由原色和包含有另外两个原色的间色组合而成。

扩展资料:

三原色的混色方法可分为:

(1)加色法混合的三原色,即用于颜色相加的三种基本颜色,通常选用红、绿、蓝三种颜色;

(2)减色法混合的三原色(为区别加色法混合的三原色,最好叫减速色法混合的三基色),即用于颜色减色法混合的三种基本颜色,一般选用红、绿、蓝的补色青、品红和黄三种颜色。

颜料中的原色是红、黄、蓝,蓝和黄可以配成绿,红和蓝可以配成紫。色光中的原色是红、绿、蓝,红和绿可以配成黄,红和蓝可以配成紫。

心理原色

心理原色为蓝色、黄色、红色、绿色。这四种心理原色加上黑白两色,形塑了色彩感知,理论上还能让人产生不同的心理作用。大脑根据三组色彩和无彩色讯息,处理视网膜上的视觉资讯:红色与绿色、蓝色与黄色(缺乏蓝色)、白色与黑色。

生理原色

生理原色指人眼三种锥状细胞所看到的色彩。锥状细胞为脊椎动物视网膜的感光细胞,每种锥状细胞能辨别一种特定的色彩:一种锥状细胞吸收红光,另一锥状细胞则吸收绿光,第三种锥状细胞吸收蓝靛光。某特定颜色散发、反射、吸收的光会以不同的效力刺激这三种锥状感光细胞,其反应模式决定了哪种色彩将会为大脑所辨识。

参考资料:

原色—百度百科

间色—百度百科

复色—百度百科

色彩的定义

  色彩科学的定义

  在人类的古代遗迹中,很早就有色彩的应用,但色彩的科学,直到牛顿发现太阳光通过三棱镜,而有七色光谱后才迈入新纪元,在16~17世纪间有很多关于光的反射、屈折的研究,先有德国物理学家Ostwald色彩论的发表,至20世纪续有美国Munsell的出现,而使得色彩的研究定下基础。

  在生活的周围,包含着自然界的动植物等均有各种颜色的存在,那什么是"色″呢最简单的说『当光线照射到物体后使视觉神经产生感受,而有色的存在。』。而色的定义亦因用途之不同,而各有其定义:

  化学家 :染料、颜料及其它物质等之特性。

  运用范围:颜料、油漆、染料等之制造以及使用人员。

  物理学家: 光学范畴中之某种现象。

  运用范围:光学仪器制造业。

  心理、生理学家: 表示观测者所意识到之意识。

  不论你扮演着那个角色,若想对颜色有所认识,那你一定要对 — 色的三要素 ,光与色感,光、色之三原色 , 色的三属性,色的表示法,色变异性和色恒性,等加以暸解。

  色的构成三要素:包括有被观察的物质、光的存在、观测者的感受。 只因为当没有物质或光的存在时,则如处于暗房中你将感受不到色的存在,同时若闭上你的双眼,相信你一样感受不到色的存在。因此要进一步认识色的构成要素,不妨由物体与色、光源与色、观察者—人与色的关系着手。

  物体与色—当光投射在物体上时,依物体的种类、构造,而将可视光线中的一部份或全部呈反射、吸收、透过等现象而展现出物体的颜色。物体的颜色受反射、吸收、透过三基因所左右,如太阳光的照射起全反射(乱反射)则呈白色,光线的全部吸收则呈黑色,光线的全部通过则呈透明色。其说明:反射(Reflection):光照射在物体之表面,部份光产生反射,反射角与入射角于同一视面称之为反射,视觉之感受产生质地感,全部光之反射,有可能为不透明感或镜面感。 吸收(Absorption): 若光线部份透过且部份被吸收,丧失某些可视光谱的光,则该物体将呈现颜色而成半透明感,若光线全部吸收,则呈黑色且不透明。透射(Transmission): 当光线照射到物体上,除了极少量之反射光,几乎所有的光都透视物体则为无色透明体。散射(Scatting Diffusing): 当光线照射在含颗粒的纤维或粗糙表面的物体时,光线之反射角将产生角度上的变化,称之为散射。

  光源与色—色的存在中,光的照射扮演着重要的角色。在初期的人类演进历史,一直习惯于太阳光下色的感觉,而今仍以太阳光为准,但是在夜间有了人工光源(如电灯、萤光灯、水银灯、钠灯、油灯、 煤气灯等),由于分光特性的不同,而呈现不相同的颜色。导致同一物体在不同光源下,色相有所差异,此差异性质谓之演色性( Colour Rendering )。

  由于自然光源、色、时间、天候、观察方向、季节及地理位置等条件影响而变化很大, 对色彩的评定极不方便,因此国际照明委员会(简称 CIE)。 于 1930 年订定各种极为接近自然光的标准光源。

  光的解析—人类的肉眼,虽因个人之间敏感度上的差异;但肉眼对色感觉,仍不失为极精巧的测色机器,而对色感觉的同时则必要有光源的存在,以太阳光而言,有各种光线之放射。在电磁波谱中,可视光波之波长, 仅占很窄之范围, 约由380nm ~760nm ( 1nm = 10-9m )其颜色分别为 380nm ~ 430nm 紫色、430nm ~485nm 蓝色、 485nm ~ 570nm 黄色、585nm ~ 610nm 橙色、610 ~ 760nm红色, 因每个人对光的感受不同, 因此以 380nm ~ 760nm略定为可视波长光的波长与明度—日光的光谱( Spectra)依波长而有不同的明度。 可见光其中间区域较亮,而两端较弱。视觉所感受的波长明度还有明亮处与暗处之别。例如在明亮处555nm 的黄绿色是最明亮的,而暗处则以 510nm 的蓝绿色明度最高。这称为Purkinie 现象。

  加法混色与减法混色—色光混合时一般说来会因光量的增加而产生明亮的感觉。这种色光的混合称之为加法混色或正混色( Additive Mixture )。而染料或颜料混合时通常颜色会变暗, 称之为减法混色或负混色( Subtractive Mixture )。以3原色作减法混色时,如果各色吸收量适当的话,最后会变成黑色;加法混色的情形,如果光的强度适当的话,最后所看到的将是白而亮的光。

  人眼的视感—人眼所感觉的色一般可分为两大类如表 :

  ┌ 白

  ┌无彩色 ┼ 灰

  │ └ 黑

  色彩 ┤

  │ ┌ 纯色

  └彩色 ┤

  └ 其它一般色彩

  按照物理学上的说明,白、灰、黑仍能算是色彩。白含有数种不同波长的单色光的振动,即色光的定量混合,是统一的复合体。既经物理全反射,当然我们的眼睛无法察觉,实在不能说它是色彩。黑是外界的刺激,完全没法达到我们眼睛的状态,换句话说,假使黑不能取得周围的物体的陪衬,那么黑色本身也全无它存在的意义。色环直径两端的色互为补色。互成补色的二色适当的混合就光而言则为白色光,就色料而言则为黑色或灰色。

  依Young -Helmholtz 之假说, 视觉感观存在三种基本之色感受视神经。经光传至视神经,刺激脑部而产生色的感觉,而这三种分光要素是红、绿、蓝的感受作用,此谓光的三原色。

  何以谓之光之三原色?以红、绿、蓝三原色光混合是白色之故。另物体之反射或透过可见之红、黄、蓝三色混合成黑色,以其为色的三原色。另在色料上的应用一般亦以红、黄、蓝三原色色料的混合,结果反射光减少而呈黑色及近黑色之色相。色料中之红、黄、蓝三原色中的二色混合,会产生绿、紫、橙之色相,此即为二次色。现以黄(Y)、红(R)、蓝(B)之代号表示,其二次色的衍生Y+R=O ,Y+B=G,B+R=P。

  色的表示法—色的运用沿袭已古,在过去先以传统之称呼定名之,如金色、银色、秋色等,随之社会之演进色彩之多,致使传统色之表示法,无法正确的表达,而后有色卡、色样之运用,然色样易招污损,变褪色,兹有较科学及归纳及光学研展。略于后:

  (1) 定性的表示方法—色名法。

  (2)定量的表示法— 1. 感觉的方法(三属性的方法)。

  2. 物理的方法。

  色名法—而色的表示方法往往配合色的测定法而应用于自动化方面。如美国现使用之 ISCC-NBS 法,此法由美国国内色彩研究学会(Inter Society Colour Council )作成, 而另由美国国家标准局( National Bereau of Standand )整理而成。

  此法能轻易表现,且以自然界的色彩为基准。色彩可经由概念来传达,但是因其相互间没有具体的数值关连,例如以色立体上的颜色称之为黑、暗黑、中灰、浅灰及白等或于其色相前加以明度或彩色之 修饰语等来表示。所以难于以科学化来处理。 以日本的产业界为例,约使用 500 ~ 1200种易判别的色名。

  感觉的方法---即并记其三属性的表示方法。依标准色票比较色名,以肉眼对照使其能适确表达, 在工业上的利用度大。而代表的表色系, 有 Ostwald 体系、Munsell 体系、日本色彩研究所体系。此三体系,皆以3 个数字或记号来表色。这三种方式,适用于染色物、涂装物、陶磁物等类均一表面色的物品,但不 能表现透明、半透明的颜色。

  物理表色法—1931 年国际照明协会 简称 CIE( Commission Intornation De'l E' clairage)或简称 ICI( International Commission on Illumination)制定以物理测量的方法,用数字型态定量表示颜色,说明如下:

  物理表示法的原理: 以分光反射率表示物体色。被太阳白色光照射的物体表面,所以会出现色,乃是因选择吸收了白色光中特定波长部份,而给人有特别的色感。属于灰色的无彩色系列,是对可视领域的全波长做均一的吸收后,即所得到的色感觉。

  分光反射率曲线图,是把400 nm到750 nm之间各波长的光照射到白色的表面与有色的表面,并以白色表面的反射光强度为100,以相对于此的百分比表示其它的白色。这种表示法比较容易了解,而且把已知构造的染料,染于特定的织物时,可藉此配色及加减染料的浓度。但是,对于应特定分光反射率曲线的色,只限于一色,而反过来要表现某一色时,充分的分光反射曲线的组合则无限多。而且这种表示法,因有演色性问题,故必须以标准光源来做测定光源。

  (1)X、Y、Z表示法:即利用物理学测定来表现数值的方法。 以 X、Y、Z 来表示衍生自三种原刺激的反刺激值,再导入色度坐标。从分光反射率曲线可推算出三刺激值,其计算方法有等间隔波长法、选定波长法,可精密表示色彩。另外,例如变换三刺激值的 X、Y,于 X-Y 色度图上,即可表示出各色度坐标。

  (2)U*V*W*、Lab法:发展来自 X-Y-Z 法,使两色间的色差数字,符合感觉上的差数,并使用色度坐标空间的表色法。如果检讨色彩与标准色的差距,即所谓的色差,会有便利之处。色差 ( △ E) 相当于标准色与试样色空间的几何距离,以数值表示。至于色差的单位, 一般惯用 NBS单位的色差。

  色的测定法有:

  (1)视觉比较法:

  a. 并置比较法:以试样与标准品邻接并排,以肉眼比较两者的颜色。此时须注意及试料的材质,并排的方向,及照明光源等。

  b. 混合等色法:试料以白色标准光源照射为基准, 再以三原色依照光量的加减混色,而求出与试料相同的色光。

  (2)光电测色法:

  a.刺激值法。

  b.色光测色计算法。

  色变异性亦可称为同色异谱、条件等色或条件对色等,亦可简单定义为:二色刺激在某参考光源下(一般指仿真平均太阳光→D65)具有相同的色外观(即所谓对色),但是在某等二光源下(如钨丝灯光→A)则二者呈现不同的色外观(即所谓不对色)。在应用上其色变异对于色彩相关行业而言(例如;印刷、纺织、油墨、塑料、彩电、照明、建筑、艺术等),在色彩品质管理上常造成很大的困扰,甚至会遭致拒收、赔偿而提高生产成本之严重损失。因此色变异性之评估乃色彩检测技术中重要的一环。

  就色变异性色彩检测技术而言,可分为定性法与定量法。常用的定性法为:

  (1) 目测法:藉多光源标准对色灯在不同标准光源下观察色样对的颜色或色差变化。

  (2) 反射率曲线法:依据物体色的反射率曲线(对于透明物体则依其透射率曲线)的交点数判定其色变异性之大小,即交点数愈多则色变异性愈小。不过至少有三个交点,亦即色变对之色变异性愈大则其反射率曲线之交点会集中在三个交点上。这三个交点为450nm、540nm、610nm其称为Barocentric wavelengths。

  就定量法而言对于物体色则常用CIE L*a*b*、CMC等色差公式计算色样对在不同光源下所呈现之色差,来评估此色样对的色变异性大小。

  色恒性亦可称为同色同谱或色彩恒常性。其相对特性即为非色恒性(colour non-constancy)即异色同谱。色恒性与色变异性二者乃是一体两面,所以很容易被混淆。简易的区分法为:色恒性是针对单一色刺激而言,然而色变异性则是指两色刺激。换言之;若某一色刺激在某参考光源下与在其它光源下均具有相同的色外观,则称此色刺激具色恒性。在日常生渚中每个具有正常色视觉的人都会同样的经验,就是大部分的自然物体色在不同自然光下都具有恒定的色外观,此现象即为色恒性。然而;由于人类科技文明的进步其人造色料或油墨及光源或照明,日新月异和不断增加且种类繁多,使日常生活与周遭环境中物体色之非恒定性大大提高。因此如何有效地进行色彩应用上的管理已成为现成极重要之课题。

什么是基色,混合色

基色是指通过其他颜色的混合无法得到的“基本色”由于人的肉眼有感知红、绿、蓝三种不同颜色的锥体细胞,因此色彩空间通常可以由三种基本色来表达。

混合色,是指两种或者多种颜色混合在一起会产生一种新的颜色。在日常生活中我们看到的颜色,大多是通过颜色混合得来的。

扩展资料:

补色律

凡两个以适当比例相混合产生白色的颜色光是互补色。例如,红色和浅青绿色、橙黄色和青色、黄色和蓝色、绿色和紫色等,都是一对对互补色。

间色律

在混合两种非补色时,会产生一种新的介于他们之间的中间色。例如红与黄混合产生橙色,蓝与红混合产生紫色。中间色的色调偏于较多的一色,饱和度决定于二色在光谱轨迹中的位置,越近则越饱和。

代替律

如果颜色A+颜色B=颜色C,若没有颜色B,而颜色X+颜色Y=颜色B。那么A+(X+Y)=C。说明每一种被混合的颜色本身也可以由其它颜色混合结果而获得。例如,如黄和蓝相混合时,黄色可以由红加绿来代替,因“红十绿=黄”。

参考资料来源:百度百科-三基色

参考资料来源:百度百科-颜色混合

色彩理论包括什么 概念方面

1、 RGB模式

RGB是色光的色彩模式。R代表红色,G代表绿色,B代表蓝色,三种色彩叠加形成了其它的色彩。因为三种颜色都有256个亮度水平级,所以三种色彩叠加就形成1670万种颜色了。也就是真彩色,通过它们足以在现绚丽的世界。

在RGB模式中,由红、绿、蓝相叠加可以产生其它颜色,因此该模式也叫加色模式。所有显示器、投影设备以及电视机等等许多设备都依赖于这种加色模式来实现的。

就编辑图象而言,RGB色彩模式也是最佳的色彩模式,因为它可以提供全屏幕的24bit的色彩范围,即真彩色显示。但是,如果将RGB模式用于打印就不是最佳的了,因为RGB模式所提供的有些色彩已经超出了打印的范围之外,因此在打印一幅真彩色的图象时,就必然会损失一部分亮度,并且比较鲜艳的色彩肯定会失真的。。这主要因为打印所用的是CMYK模式,而CMYK模式所定义的色彩要比RGB模式定义的色彩少很多,因此打印时,系统自动将RGB模式转换为CMYK模式,这样就难免损失一部分颜色,出现打印后失真的现象。

2、 CMYK模式

当阳光照射到一个物体上时,这个物体将吸收一部分光线,并将剩下的光线进行反射,反射的光线就是我们所看见的物体颜色。这是一种减色色彩模式,同时也是与RGB模式的根本不同之处。不但我们看物体的颜色时用到了这种减色模式,而且在纸上印刷时应用的也是这种减色模式。

按照这种减色模式,就衍变出了适合印刷的CMYK色彩模式。

CMYK代表印刷上用的四种颜色,C代表青色,M代表洋红色,Y代表黄色,K代表黑色。因为在实际引用中,青色、洋红色和黄色很难叠加形成真正的黑色,最多不过是褐色而已。因此才引入了K——黑色。黑色的作用是强化暗调,加深暗部色彩。

CMYK模式是最佳的打印模式,RGB模式尽管色彩多,但不能完全打印出来。那么是不是在编辑的时候就采用CMYK模式呢?不是,原因如下:

用CMYK模式编辑虽然能够避免色彩的损失,但运算速度很慢。主要因为:1、即使在CMYK模式下工作,Photoshop也必须将CMYK模式转变为显示器所使用的RGB模式。2、对于同样的图象,RGB模式只需要处理三个通道即可,而CMYK模式则需要处理四个 馈?/p>

由于用户所使用的扫描仪和显示器都是RGB设备,所以无论什么时候使用CMYK模式工作都有把RGB模式转换为CMYK模式这样一个过程。

因此,是否应用CMYK模式进行编辑都成在RGB模式和CMYK模式转换的问题。

这里给个建议,也算是我的一点经验吧。先用RGB模式进行编辑工作,再用CMYK模式进行打印工作,在打印前才进行转换,然后加入必要的色彩校正,锐化和休整。这样虽然使Photoshop在CMYK模式下速度慢一些,但可节省大部分编辑时间。

为了快速预览CMYK模式下图象的显示效果,而不转换模式可以使用View菜单下的CMYK Preview(CMYK 预览)命令。

这种打印前的模式转换,并不是避免图象损失最佳的途径,最佳方法是将Lab模式和CMYK模式相结合使用,这样可以最大程度的减少图象失真。下面介绍Lab模式。

3、 Lab模式

Lab模式是有国际照明委员会(CIE)于1976年(哇,好遥远呀。)公布的一种色彩模式。

你已经明白了:RGB模式是一种发光屏幕的加色模式,CMYK模式是一种颜色反光的印刷减色模式。那么,Lab有是什么处理模式呢?

Lab模式既不依赖光线,也不依赖于颜料,它是CIE组织确定的一个理论上包括了人眼可以看见的所有色彩的色彩模式。Lab模式弥补了RGB和CMYK两种色彩模式的不足。

Lab模式由三个通道组成,但不是R、G、B通道。它的一个通道是亮度,即L。另外两个是色彩通道,用A和B来表示。A通道包括的颜色是从深绿色(底亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);B通道则是从亮蓝色(底亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种色彩混合后将产生明亮的色彩。

Lab模式所定义的色彩最多,且与光线及设备无关并且处理速度与RGB模式同样快,比CMYK模式快很多。因此,可以放心大胆的在图象编辑中使用Lab模式。而且,Lab模式在转换成CMYK模式时色彩没有丢失或被替换。因此,最佳避免色彩损失的方法是:应用Lab模式编辑图象,再转换为CMYK模式打印输出。

当你将RGB模式转换成CMYK模式时,Photoshop将自动将RGB模式转换为Lab模式,再转换为CMYK模式。

在表达色彩范围上,处于第一位的是Lab模式,第二位的是RGB模式,第三位是CMYK模式。

4、HSB模式

在介绍完三种主要的色彩模式后,现在介绍另一种色彩模式——HSB色彩模式,它在色彩汲取窗口中才会出现。

在HSB模式中,H表示色相,S表示饱和度,B表示亮度。

色相:是纯色,即组成可见光谱的单色。红色在0度,绿色在120度,蓝色在240度。它基本上是RGB模式全色度的饼状图。

饱和度:表示色彩的纯度,为0时为会色。白、黑和其他灰色色彩都没有饱和度的。在最大饱和度时,每一色相具有最纯的色光。

亮度:是色彩的明亮读。为0时即为黑色。最大亮度是色彩最鲜明的状态。

色彩的本质是什么?

色彩是引起共同的审美愉快的、我们最为敏感的形式要素。色彩同时诉诸儿童和成人;即使是婴儿,最容易接受的也是色彩明亮的东西。那些总是被他或她所称的"现代"艺术弄得迷惑不解的凡夫俗子,通常也能从中发现色彩的活力与魅力。这个人可能对变形的形状不可理解,但对色彩的运用少有异议,如果作品的色彩确实非常和谐的话。事实上,一件艺术作品的色彩总是具有独立的欣赏价值。

色彩是最有表现力的要素之一,因为它的性质直接影响我们的感情。当我们观看一件艺术作品的时候,我们并非必定理性地认识我们假定对其色彩产生感觉的东西,而是对它有一种直接的感情反应。愉悦的色彩节奏与和谐满足了我们的审美需求。我们喜欢某种色彩配合,而拒绝另一种配合。在再现艺术中,色彩真实再现对象,创造幻觉空间的效果。色彩研究以科学事实为基础,要求精确和明晰的系统性。我们将考察色彩关系的这些基本特征,看看它们怎样帮助艺术作品的题材创造形式和意义。

光:色彩之源

色彩始于光,也源于光,包括自然光与人工光。光线微弱的话,色彩也就微弱;光线明亮的地方,色彩就可能特别强烈。当光线微弱的时候,如黄昏和黎明,不容易辨别不同的色彩。在明亮的光线和阳光下,如在热带气候下,色彩看来就比原色更加强烈。

来自太阳的每一道光线是由以不同速度振动的波组成的。在我们心智中产生的色彩感觉是我们的视觉对不同波长作出反应的方式。让一束光线透过一块棱柱形的玻璃,然后让它反射在一张白纸上,通过这种现象可以证实上述原理。当光束以不同的角度(根据它们的波长)穿过棱柱时,光束就会折射,然后以不同的色彩反射在白纸上。我们的视觉在称为光谱的窄带上识别这些作为单个色条的颜色。在这个光谱上很容易识别的主要颜色是红、橙、黄、绿、蓝、蓝-紫和紫(科学家用"靛青"一词取代艺术家所称的蓝-紫)。但是,这些颜色逐渐调和在一超时,我们就能看到它们之间的中间色。

附加色 光谱的颜色是纯的,它们代表了最强烈(明亮)的可能性。我们能够选择光谱上的所有这些颜色,再用在上一段讲述的相反的过程来调和它们,我们就能再得到白色的光。当艺术家或物理学家用彩色的光线工作时,他们就是在使用"附加色"。当红、蓝和绿色(原附加色)的光束相重叠时,会发生一些有趣的现象。当红色与蓝色光相重叠时,会产生洋红色;当红色与绿色光相重叠时,就产生黄色;绿色与蓝色光重叠,就产生青(蓝绿)色。当红、蓝、绿三色光相重叠时,产生的是白光 这证明了白色光是由所有颜色的波长共同创造的。

电视生产运用了这种附加色的调和过程。现代色彩监视器是由微小的红、蓝和绿三种荧光色构成的。通过525条水平线来显示,它们单独地或在不同的组合中闪亮,从而产生可能有各种颜色的感觉。每一个形象是由交替线条的两次扫描构成的 此时线条是偶数组合。平均每秒钟扫描60次。在一定距离之外不可能区分荧光闪烁的线条和色带,眼晴会把它们调和在一起,产生各种颜色的鲜明形象。一个艺术家熟悉附加色系统是非常重要的,因为它被用于电视生产、电脑图像、霓虹灯标志、幻灯和多媒体展示、激光效果和舞台布景。在每种情况下,艺术家和工程师都是通过灯光来工作,通过红、蓝、绿三原色光的调和来创造色彩。

负色 既然所有的颜色都呈现于一根光带上,那么我们怎么能分辨从自然对象上反射出来的单个的颜色呢,任问有额色的物体都有称之为色彩或颜色的物理属性,能够吸收一部分光波,反射另一部分光波,一片绿色的树叶向眼睛呈现出绿色,足因为树叶反射出光束中的绿色光波,而吸收了所有其他的颜色.一个艺术家的颜料具有这种属性,当颜料被运用于一个对象的表面时,就会使它具有同样的性质,艺术家也可以通过染料、着色剂、化学溶剂和汽油(好比运用于雕塑)来选择一个物体的表面颜色。

不管表面的颜色怎样运用或选择,当表面吸收了所有的光波,除了经验过的那些色彩,色彩的感觉就产生了。在这种情况下,艺术家是用已知为"负色"的反射光来工作的,而不是用实际的光波或附加色。例如,当看着一张纯白色的纸时,所有的色光波都被反射回观者的眼中--没有任何色光被减去或被纸面吸收。当红色覆盖着表面时,就只有红色的光波反射到观众眼中 所有其他的色光被减去或被颜色吸收。其结果是体验到了红色。被表面吸收的所有能量(没有被反射出来的光波)等于绿色--反射出色彩的对比或互补。如果一块绿色破碎于纸上,对比是真实存在的。绿色,两种剩余的原色--蓝色和黄色--的混合,只反射出绿色的光波,而吸收或减去其他的颜色,即红色。

当所有的原色--蓝色、黄色和红色--混合在一起所产生的颜色能够吸收和减去所有白色光波中的颜色。这种颜色将不反射任何色光而呈现为黑色没有任何光波。(这是混合的附加色的对立面,所有原色光的混合产生白色)。但是,因为艺术家用颜料的杂质和不完整,任何表面都不可能绝对地吸收所有的光波,除了那些正被反射的光波。此外,颜色反射的不只是一种主导颜色或某种程度的白色。由于这些原因,对比色的混合--包括所有的原色--都不会产生纯黑色,而是一种灰黑色。

不论是纯色还是调和色,创造出来的颜色总是与减色相关联,一个形象反射的只是所见的颜色波长,而吸收了所有其他的波长。我们在本章的下面部分讨论颜色的时候,主要涉及可视的反射色光的颜色,而不是混合色光或附加色的感觉。

混合颜色

如前所说,光谱包括红、橙、黄、绿、蓝、蓝-紫和紫色,以及在其最纯度上的上百个微妙的色彩变化。这个色彩范围也适用于颜色。儿童或初学者在使用颜色时,很可能只使用几种简单的或单纯的颜色。他们意识不到简单的颜色也是有变化的。很多颜色是通过两种以上的颜色调和出来的。

但是,有三种颜色是不能通过调和创造出来的;它们是红、黄、蓝色,即所谓三原色。当将两种原色相调和时,份量相等或不相等,它们就可能创造出几乎所有的颜色。任意两种原色相调和产生一种二次色(亦称复色):橙色出自红色与黄色;绿色出自黄色和蓝色。而且,某种中间色是由一种原色与相邻的二次色相调和创造出来的。中间色的数量是无限的,原色或二次色在比例上的变化导致颜色的变化。换句话说,黄色与绿色相调和产生出的不只是一种黄-绿色。如果使用更多的黄色,其结果与用较多的绿色的黄-绿色大不相同。艺术家偶而也不正确地把中间色作为三次色。三次色是出自两种二次色的调和 不是一种原色与二次色调和。稍后将更深人地讨论。如果我们研究混合色从黄到黄-绿到绿的进阶,就会发现一个呈现为色轮的自然次序。我们区别微妙变化的能力使我们在每个位置上看到一种新颜色。

三色系统 三原色在色轮上的空间分布是均等的,黄色一般在顶上,因为它最接近白色。这些颜色构成一个等边三角形,即所谓原三色。三种二次色被置于调和出它们的两种原色之间;空间均等,它们创造了由橙、绿和紫构成的二次三色。置于每种原色和二次色之间的中间色创造了均等的空间单位,即中间三色。所有位置使颜色处于一个12色的色轮中。当我们围着色轮走动时,色彩就发生变化,这是因为导致这些颜色变化的光线波长的作用。靠在一起的颜色在色轮上显示出来,靠近的颜色是它们的色彩关系;相距较远的在色性上较对比。直接相对的颜色彼此提供了最强烈的对比,即补色。

任何颜色的互补都是以三原色系统为基础。例如,红的补色是绿色 三原色剩下的另外两种颜色,份量相等的黄色和蓝色的混合。因此,颜色及其补色都是由三原色构成的;黄色的补色是蓝色和红色的混合造成,即紫色。如果颜色是"混合的"二次色(即橙色),其补色可以通过创造这种颜色的原色(红与黄)发现出来,三原色中剩下的颜色(蓝色)即是它的补色。

中性色 不是所有的物体都有色彩的性质。一些是黑色的、白色的或灰色的,它们看起来不同于色谱上的任何颜色。在那些东西中没有发现色彩的性质;它们的区别仅在于它们反射光的数量上。因为我们不能在黑、白和灰中辨别出任何一种颜色,它们便被称为中性色。这些中性色实际上反映了在一种光线中色彩波长变化的数量。

一种中性色,白色,可以视为所有颜色的存在,因为它是发生在一个表面反射不在同等程度上所有颜色的波长。

那么黑色一般被视为没有颜色,因为它是在一个表面上均匀吸收了所有色光,而没有反射任何色光的结果,绝对的黑色很少有,除非在很深的山洞中。因此,大多数黑色仍然包含一些被反射的色彩的痕迹,不过很轻微。

任何灰色都是一种不纯的白色,因为它只是部分反射所有色光的结果。如果反射光的数量很大,灰色就比较亮;如果数量小,灰色就较暗。中性色是由反射光的数最显示出来的,而颜色则与反射光的质量相关联。

色彩的物理属性

不论艺术家是否用颜料、染料还是墨水来工作,每一种被使用的颜色都必须根据颜色的三种物理属性来描述:色相、明暗和纯度。

色相 色相是一般的色彩名称 红、蓝、绿,等等--用来称谓对在可视光线中能辨别的每种波长范围的视觉反应。色相指示了一种颜色在色谱或色轮中的位置。每一种颜色实际上存在着很多微妙的变化,尽管它们都始终使用简单的色彩名称。例如,很多红色在性质上与纯粹的红色大不相同,但我们仍然以红的色相来识别它们。此外,把一种颜色添加到另一种颜色会改变这种颜色的色相;这实际上改变了光的波长。任何两种颜色的混合可以创造出无限的层次(变体)--例如,黄色与绿色之间。为了概念的清晰,艺术家一般把色相放在十二个层次的色轮上来确定(辨别或命名)色相。

明暗 一个人的色调范围可以通过把黑色或白色增加在色相上来产生。这说明色彩有不同于色相的特性。被称为明暗的色彩特性对色彩的明和暗,或一种颜色反射的光量进行区分。

色彩的基本概念是什么?

光从物体反射到人的眼睛所引起的一种视觉心理感受。色彩按字面含义上理解可分为色和彩,所谓色是指人对进入眼睛的光并传至大脑时所产生的感觉;彩则指多色的意思,是人对光变化的理解。

一、色彩由固有色、光源色、环境色三要素构成。

固有色是太阳光的照射下呈现出的色彩,如叶子是绿的,花是红的,天是蓝的,柠檬是黄的等。光源色是光源照射到白色光滑不透明物体上所呈现出的颜色,如一件白色的衬衣,在红色光源的照射下呈现红色,在蓝色光源的照射下呈现蓝色。

环境色是物体所处环境色彩的反映。物体受光源照射时,一般除受主要发光体(或反光体)的照射外,同时还可能受到次要发光体(或反光体)的影响,只是影响比前者弱,次要发光体(主要是反光体)所呈色彩在物体暗面的反映,就是环境色。

二、色彩的三原色。

三原色是由红、黄、蓝三色组成他们相互独立,任意两种颜色组成,会调出不同的颜色。如红+黄=紫,黄+蓝=绿等不同颜色。三颜色是绘画的基础,只有了解了三原色的性质和特征,才能应用色彩的真正意义。

三、色彩具有三要素,是由明度、亮度、饱和度组成。

明度是指色彩的明暗程度。各种有色物体由于它们反射光线的差别,因而产生了颜色的明暗感觉。恰到好处地处理物体各部位的明度,可以产生物体的立体感。白色是影响明度的重要因素,当明度不足时,添加白色,反之亦然。

扩展资料:

一、色彩的种类

1、无彩色系

无彩色系是指白色、黑色和由白色黑色调合形成的各种深浅不同的灰色。无彩色按照一定的变化规律,可以排成一个系列,由白色渐变到浅灰、中灰、深灰到黑色,色度学上称此为黑白系列。

黑白系列中由白到黑的变化,可以用一条垂直轴表示,一端为白,一端为黑,中间有各种过渡的灰色。纯白是理想的完全反射的物体,纯黑是理想的完全吸收的物体。

2、有彩色系

彩色是指红、橙、黄、绿、青、蓝、紫等颜色。不同明度和纯度的红橙黄绿青蓝紫色调都属于有彩色系。有彩色是由光的波长和振幅决定的,波长决定色相,振幅决定色调。

二、色调与色彩的关系

色调与色彩关系是密不可分的,色彩关系有序、合理,画面色调感就强;色彩关系凌乱无序,画面就缺少色调感。换句话说要想获得画面的整体色调,就必须建立和谐统一的画面色彩关系,推敲用色的纯度、明度,并对色彩进行适当的归纳与概括。

对现实的色彩进行归纳与概括,或者说准确把握一幅画面的整体色彩关系,是完成一幅作品的必要条件。如果在落笔前就能明确表现出对象的整体色调,那么局部色彩也会随之变得明确而容易把握,色彩的整体关系就不会出现大的偏差,这时,色调就成了作画者对缤纷的自然色彩进行归纳和概括的有效手段。

参考资料来源:百度百科-色彩

ps中什么是基色 混合色 结果色

基色是图像中的原稿颜色。

混合色是通过绘画或编辑工具应用的颜色。

结果色是混合后得到的颜色。

两个相邻图层A和B,A在上方,B在下方,A与B混合,A是混合色,B是基色;A与B混合得到的颜色是结果色。

B可以是背景图层,也可以不是背景图层。除了在个别场合(例如图层样式中的挖空效果),图层混合总是发生在相邻两个图层之间,如果B图层完全透明没有像素(这种情况同时适用于B隐藏),而B下方还有图层C,则A将与C混合而不是与B混合,所得到的结果色是A与C混合后的结果色。

正片叠底,蒙板等介绍中都有基色,混合色的概念,它们具体是什么意思啊,怎么用,正片叠底,蒙板怎么用呢,什么情况下会用到

为什么要交正片叠底,这个功能为什么这么叫?

(一) 三基色原理

在中学的物理课中我们可能做过棱镜的试验,白光通过棱镜后被分解成多种颜色逐渐过渡的色谱,颜色依次为红、橙、黄、绿、青、蓝、紫,这就是可见光谱。其中人眼对红、绿、蓝最为敏感,人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。同样绝大多数单色光也可以分解成红绿蓝三种色光。这是色度学的最基本原理,即三基色原理。三种基色是相互独立的,任何一种基色都不能有其它两种颜色合成。红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。红绿蓝三基色按照不同的比例相加合成混色称为相加混色。

红色+绿色=黄色 绿色+蓝色=青色 红色+蓝色=品红 红色+绿色+蓝色=白色

黄色、青色、品红都是由两种及色相混合而成,所以它们又称相加二次色。另外:

红色+青色=白色 绿色+品红=白色 蓝色+黄色=白色

所以青色、黄色、品红分别又是红色、蓝色、绿色的补色。由于每个人的眼睛对于相同的单色的感受有不同,所以,如果我们用相同强度的三基色混合时,假设得到白光的强度为100%,这时候人的主观感受是,绿光最亮,红光次之,蓝光最弱。

除了相加混色法之外还有相减混色法。在白光照射下,青色颜料能吸收红色而反射青色,黄色颜料吸收蓝色而反射黄色,品红颜料吸收绿色而反射品红。也就是:白色-红色=青色 白色-绿色=品红 白色-蓝色=黄色

另外,如果把青色和黄色两种颜料混合,在白光照射下,由于颜料吸收了红色和蓝色,而反射了绿色,对于颜料的混合我们表示如下:

颜料(黄色+青色)=白色-红色-蓝色=绿色

颜料(品红+青色)=白色-红色-绿色=蓝色

颜料(黄色+品红)=白色-绿色-蓝色=红色

以上的都是相减混色,相减混色就是以吸收三基色比例不同而形成不同的颜色的。所以有把青色、品红、黄色称为颜料三基色。颜料三基色的混色在绘画、印刷中得到广泛应用。在颜料三基色中,红绿蓝三色被称为相减二次色或颜料二次色。在相减二次色中有:

(青色+黄色+品红)=白色-红色-蓝色-绿色=黑色

用以上的相加混色三基色所表示的颜色模式称为RGB模式,而用相减混色三基色原理所表示的颜色模式称为CMYK模式,它们广泛运用于绘画和印刷领域。

RGB模式是绘图软件最常用的一种颜色模式,在这种模式下,处理图像比较方便,而且,RGB存储的图像要比CMYK图像要小,可以节省内存和空间。

CMYK模式是一种颜料模式,所以它属于印刷模式,但本质上与RGB模式没有区别,只是产生颜色的方式不同。RGB为相加混色模式,CMYK为相减混色模式。例如,显示器采用RGB模式,就是因为显示器是电子光束轰击荧光屏上的荧光材料发出亮光从而产生颜色。当没有光的时候为黑色,光线加到最大时为白色。而打印机呢?它的油墨不会自己发出光线。因而只有采用吸收特定光波而反射其它光的颜色,所以需要用减色法来解决。

(二)、HLS(色相、亮度、饱和度)原理

HLS 是Hue(色相)、Luminance(亮度)、Saturation(饱和度)。色相是颜色的一种属性,它实质上是色彩的基本颜色,即我们经常讲的红、橙、黄、绿、青、蓝、紫七种,每一种代表一种色相。色相的调整也就是改变它的颜色。

亮度就是各种颜色的图形原色(如RGB图像的原色为R、G、B三种或各种自的色相)的明暗度,亮度调整也就是明暗度的调整。亮度范围从 0 到255,共分为256个等级。而我们通常讲的灰度图像,就是在纯白色和纯黑色之间划分了256个级别的亮度,也就是从白到灰,再转黑。同理,在RGB模式中则代表个原色的明暗度,即红绿蓝三原色的明暗度,从浅到深。

饱和度是指图像颜色的彩度.对于每一种颜色都有一种人为规定的 标准颜色,饱和度就是用描述颜色与标准颜色之间的相近程度的物理量。调整饱和度就是调整图像的彩度。将一个图像的饱和度条为零时,图像则变成一个灰度图像,大家在电视机上可以试一式调整饱和度按钮。

另外还有一个概念,就是对比度。对比度是指不同颜色之间的差异。对比度越大,两种颜色之间的相差越大,反之,就越接近。如,一幅灰度图像提高它的对比度会更加黑白分明,调到的极限时,变成黑白图像,反之,我们可以得到一幅灰色的画布。

我们了解了颜色的原理,我们在图像处理中就不会茫然,并且对于调整颜色也可以更快,更准

>>>>全文在线阅读<<<<

标签: 原色 关系

相关阅读